On deformations of Gorenstein-projective modules over Nakayama and triangular matrix algebras

نویسندگان

چکیده

Let k be a fixed field of arbitrary characteristic and let ? basic connected Nakayama k-algebra without simple projective modules. In this article we prove that if V is an indecomposable finitely generated Gorenstein-projective left ?-module, then the versal deformation ring R(?,V) (in sense F. M. Bleher author) universal stable after taking syzygies. We also following result. ?=(?B0?) triangular matrix finite dimensional Gorenstein with B as ?-module ? global dimension. If (VW)f ?-module End_?((VW)f)=k, End_?(V)=k, rings R(?,(VW)f) are both isomorphic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Categories, Leavitt Path Algebras, and Gorenstein Projective Modules

For a finite quiver without sources or sinks, we prove that the homotopy category of acyclic complexes of injective modules over the corresponding finite-dimensional algebra with radical square zero is triangle equivalent to the derived category of the Leavitt path algebra viewed as a differential graded algebra with trivial differential, which is further triangle equivalent to the stable categ...

متن کامل

Strongly Gorenstein projective , injective and flat modules

Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...

متن کامل

Relative Singularity Categories and Gorenstein-projective Modules

We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable cat...

متن کامل

A generalization of strongly Gorenstein projective modules

This paper generalize the idea of the authors in J. Pure Appl. Algebra 210 (2007) 437–445. Namely, we define and study a particular case of Gorenstein projective modules. We investigate some change of rings results for this new kind of modules. Examples over not necessarily Noetherian rings are given.

متن کامل

Gorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules

In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2021

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2020.106562